Note on the spectral radius of alternating sign matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

The Poset Perspective on Alternating Sign Matrices

Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or −1 whose rows and columns sum to 1 and whose nonzero entries alternate in sign. We put ASMs into a larger context by studying the order ideals of subposets of a certain poset, proving that they are in bijection with a variety of interesting combinatorial objects, including ASMs, totally symmetric self–complementary plane...

متن کامل

Affine Alternating Sign Matrices

An Alternating sign matrix is a square matrix of 0’s, 1’s, and −1’s in which the sum of the entries in each row or column is 1 and the signs of the nonzero entries in each row or column alternate. This paper attempts to define an analogue to alternating sign matrices which is infinite and periodic. After showing the analogue we define shares desirable cahracteristics with alternating sign matri...

متن کامل

Symmetric alternating sign matrices

In this note we consider completions of n×n symmetric (0,−1)-matrices to symmetric alternating sign matrices by replacing certain 0s with +1s. In particular, we prove that any n×n symmetric (0,−1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with +1s can be completed to a symmetric alternating sign matrix. Similarly, any n × n symmetric (0,+1)-matrix that can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2014

ISSN: 0024-3795

DOI: 10.1016/j.laa.2013.08.004